Измерение силы человека. Объем и сила мышц: почему некоторые люди — сильнее, а некоторые — объемнее. Динамометр кистевой ДК

Измерение силы человека. Объем и сила мышц: почему некоторые люди — сильнее, а некоторые — объемнее. Динамометр кистевой ДК
Измерение силы человека. Объем и сила мышц: почему некоторые люди — сильнее, а некоторые — объемнее. Динамометр кистевой ДК

Но не обычных, которые используются в промышленности, а специальных - медицинских. К медицинским динамометрам относят кистевой, также называемый ручным, динамометр и становой динамометр. В данной статье мы расскажем, как же проводят измерения при помощи данных приборов.

Итак, начнем с кистевого динамометра. Данный прибор предназначается для определения сжимающей силы мышц сгибающих пальцы обоих рук человека, а также для диагностики состояния и функции рук, как здоровых людей, так и восстанавливающихся после травм. Динамометр кистевой используется врачами, которые занимаются физиотерапией, кроме того, динамометр применяется в правоохранительных органах, вооруженных силах и МЧС. Приборы для измерения силы незаменимы для подготовки профессиональных спортсменов. В качестве примера кистевого динамометра можно привести такие приборы, как: механический ДК и электронный ДМЭР.

Динамометр кистевой ДК.

Для проведения измерений изометрической силы с использованием динамометра не требуется много времени, к тому же процесс замера не утомляет испытуемого. Для получения точных абсолютных результатов необходимо, чтобы пациент соблюдал определенное положение тела и угол отдельных суставов. Пусть обследуемый человек вытянет руку с кистевым динамометром и отведет её в сторону перпендикулярно туловищу. Свободная рука, при этом, должна быть расслаблена и опущена вниз. После чего, по команде, он должен будет сжать динамометр кистевой так сильно, как только сможет. Динамометрическое измерение может проходить поочередно обеими руками несколько раз, при этом, выбирается лучший результат для каждой руки.

Делать выводы на основании абсолютных результатов проведенных измерений можно только в динамике, когда предыдущие результаты были занесены в специальный дневник. В противном случае, поскольку на результаты измерений, проведенных с использованием динамометра, оказывают влияние такие факторы, как возраст, пол испытуемого, а также рост и вес, следует использовать более объективные показатели. Самым объективным показателем силы будет являться так называемая, относительная величина мышечной силы. Это связано, помимо перечисленных факторов, с тем, что в ходе тренировок, рост абсолютных показателей силы тесно связан с ростом мышечной массы человека, и как следствие с его весом.

Чтобы определить величину относительной силы кисти, нужно абсолютные показания в килограммах, полученные измерением ручным динамометром, умножить на 100 и разделить на вес тела спортсмена. Для мужчин, не занимающихся спортом, этот показатель должен составлять 60-70, а для женщин 45-50.

Становая динамометрия, проводимая с использованием станового динамометра, это, можно сказать, комплексное измерение силовых качеств спортсмена, поскольку в таком исследовании участвуют практически все основные мышцы. Упражнение становой тяги с использованием динамометра должно применяться во всех учреждения диспансерного типа спортивно-оздоровительного профиля. В качестве примера станового динамометра можно привести ДС-200 и ДС-500.

Динамометр Становой ДС-200

Становая динамометрия подразумевает использование станового динамометра - прибора, который по виду напоминает обычный ножной эспандер, который состоит из рукояти, подножки, подкладываемой под ноги, троса и измерительного прибора с датчиком и отсчитывающим устройством. Испытуемый должен потянуть рукоять на себя и вверх так сильно, как только сможет, при этом, ноги должны быть прямыми в коленях.

Относительная величина становой силы рассчитывается точно так же, как и в ручной динамометрии, однако, здесь показатели индекса должны быть в разы больше. Например:

Если индекс менее 170 - то индекс относительной величины становой силы низкий.

  • От 170 до 200 - ниже среднего.
  • 200 - 230 - средний.
  • 230 - 260 - выше среднего.
  • Если же более 260 - то считается высоким.

Увеличение относительных показателей силы, как ручной, так и становой, как правило, говорит о повышении мышечной силы, а, следовательно, об увеличении мышечной массы в процентном соотношении.

Показания таких измерений используются в неврологии при обследовании заболеваний, которые могут сопровождаться мышечной слабостью, например, миастения, рассеянный склероз со слабостью конечностей, а также, различные последствия инсульта.

Отдельно следует выделить такой вид исследования, как динамография, при котором показатели силы и скорости сокращения мышц записываются на графике. Как видно из названия, суть этого метода состоит в том, что показания записываются в графическом виде в динамике (во времени). Часто, динамография связана с какими либо упражнениями или обстоятельствами, эффективность которых необходимо измерить.

У детей, также существуют усредненные показатели динамометрии, которые принято считать нормой. Усредненные величины различаются в зависимости от пола, роста, возрастной категории испытуемого. Измерения силы кисти правой руки и становой силы, обычно, проводят для детей в возрасте от восьми до 18 лет в два этапа, с небольшим перерывом для отдыха. Так, нормы показателей силы кисти правой руки для мальчиков составляют:

  • От 13 до 18,5 кг - для возраста 8-11 лет.
  • 21,6 - 37,6 кг - 12-15 лет.
  • 45,9 - 51 кг - 16-19 лет.

Для девочек, норма колеблется в пределах:

  • 9,8 - 17,1 кг - для возраста 8-11 лет.
  • 19,9 - 28,3 кг - 12-15 лет.
  • 31,3 - 33,8 кг - 16-19 лет.

Завершая статью, скажем только что динамометрия - это важный элемент антропометрии, который нашел свое применение в физиологии, спортивной медицине, гигиене спорта. Благодаря показателям абсолютной и относительной величины силы производится оценка степени физического развития человека.

Мышечную силу определяют методом действия и противодействия, т. е. больного просят выполнять свойственное для сустава движение и, противодействуя рукой исследующего, определяют напряжение мышц. Силу мышц оценивают по 5-балльной системе: 5 баллов - мышцы здоровой конечности, 4 балла - незначительная атрофия мышц, но сила позволяет преодолеть вес сегмента конечности и препятствие, создаваемое рукой исследователя. Однако сопротивление слабее, чем на здоровой конечности. 3 балла - умеренная атрофия мышц с активным преодолением веса сегмента, но без сопротивления. 2 балла - выраженная атрофия, мышцы с трудом сокращаются, но без веса сегмента. 1 балл - выраженная атрофия мышц, сокращений нет.

Лабораторные: Клинические анализы

Под клиническими исследования понимают в первую очередь, общие анализы крови, мочи и кала. Это тот минимум лабораторных исследований, без которого пострадавшему невозможно провести полноценную терапию, а тем более выполнить хирургическое вмешательство без риска получить тяжелое осложнение или даже летальный исход.

Исследование крови проводят с подсчетом количества эритроцитов, лейкоцитов и лейкоформулы, определением уровня содержания гемоглобина, цветового показателя, гематокритного числа, СОЭ. Если предполагается оперативное вмешательство, есть подозрение на продолжающееся внутритканевое или внутриполостное кровотечение, исследование дополняют подсчетом тромбоцитов, ретикулоцитов, определением времени свертываемости и длительности кровотечения.

Приводим примерные нормальные показатели, перечисленных инградиентов исследований у взрослого человека. Почему примерные? Да потому, что они имеют колебания в зависимости от возраста, пола, иногда времени суток и места жительства исследуемого. Приводим средние цифры норм для центральной зоны России без учета экстремальных климатических районов Крайнего Севера, Северо-Востока, Юга.

Количество эритроцитов: Мужчины (4,0…5,5) х10 12/л; Женщины (3,6…5,0) х10 12/л.

Количество лейкоцитов: (4,0…4,8) х10 12/л

Гематокритное число – соотношение объемов эритроцитов и плазмы циркулирующей

крови: Мужчины - 0,380 – 0,480; Женщины – 0,330 – 0, 450;

Тромбоциты (180…320) х 10 9/л

Ретикулоциты (молодые формы эритроцитов) в норме в циркулирующей крови их от 0,2 до

1%, т. е. (30…70) х 10 9/л

Длительность кровотечения (по Дьюку) – 2-3 минуты

Время свертываемости крови (по Сухареву) – начало от 30 секунд до 2 минут.

Конец от 3 до 5 минут.

Лейкоформула –процентное содержание разных лейкоцитов в мазке крови. Исследование практически не специфическое, но очень важное, так как является показателем тяжести состояния больного.

Моча – определяют количество, цвет, прозрачность, плотность (норма 1,008-1,025, колеблется в течение суток). РН – 4.5 – 8. 0. Пробы на белок, глюкозу, билирубин – должны быть отрицательные.

При травмах – исследование на наличие крови. Положительная реакция указывать на повреждение мочеполовых органов и мочевыводящих путей. При тяжелых травмах – олигурия, анурия указывают на тяжесть состояния больного и являются прогностически плохим признаком.

Кал – наличие крови в кале после травмы подтверждает повреждение кишечника, другие отклонения от нормы могут указывать на сопутствующие заболевания: нарушение фукнции печени, поджелудочной железы, гельминты и. т. д.

Из общеклинических анализов важное значение имеют исследование жидкостей, полученных из серозных полостей: плевральной, перикарда, брюшной полости, сустава, люмбальной. Содержимое этих полостей при травмах может говорить о многом. Наличие крови в плевральной полости указывает на гематоракс или продолжающееся кровотечение. То же самое можно получит из брюшной полости, но в отличие от плевральной, содержимым ее может быть транссудат с примесью мочи, желчи, содержимого кишечника и даже остатков пищи, что указывает на катастрофу соответствующих органов.

Динамометрия – методика измерения силы отдельной мышцы или группы мышц при помощи специальных приборов – динамометров.

Кистевая динамометрия

Кистевая динамометрия – измерение силы мышц-сгибателей пальцев. Динамометрия кисти выглядит как одномоментное максимальное воздействие на прибор мышечных волокон. При разогнутом предплечье исследуемый сжимает ручной динамометр одной кистью. Исследование проводится для обеих конечностей, после чего производится сравнение полученных данных. При помощи реверсивного прибора проводят исследование также для разгибателей предплечья, сгибателей бедра и голени.

Становая динамометрия и динамография

Становая динамометрия – измерение силы мышечных групп, выпрямляющих туловище. Нижняя планка станового динамометра должна быть зафиксирована под ступнями испытуемого. Исследуемый обхватывает верхнюю планку кистями рук и тянет вверх. При этом он пытается выпрямиться при разогнутых в коленях нижних конечностях.

Помимо становых, реверсивных и ручных пружинных динамометров существуют ртутные приборы, в которых мышечная сила определяется как уровнем давления на датчик при помощи ртутного манометра.

Динамография – вид исследования, который позволяет регистрировать мышечные сокращения в виде серии кривых на графике. Этот метод показывает длительное мышечное усилие мышцы или группы мышц в динамике. Динамография используется в курортологии, неврологии.


Выражаются показатели динамометрии абсолютными величинами или относительными (по отношению к чему-либо, к массе, например). Данные измерения учитываются антропометрией, в физиологии, в гигиене спорта и спортивной медицине. Также полученные результаты используют для оценки степени физического развития человека.

Оценка результатов

Разработаны различные шкалы оценки показателей динамометрии. Существуют усредненные величины результатов динамометрии, которые принимаются за норму. Они различаются в зависимости от роста, пола и возрастной категории испытуемого. Однако следует учитывать и другие индивидуальные особенности пациента.


Одними из основных показателей физического развития у детей, начиная с возраста восьми лет и до восемнадцати, являются становая сила и сила правой кисти, выраженные в килограммах. В неврологии могут использоваться и измерения других групп мышц при необходимости таковых. Чаще всего исследования выполняются при неврологических заболеваниях, сопровождающихся мышечной слабостью (миастении, парезы после инсульта, оценка эффективности лечения рассеянного склероза со слабостью конечностей и т.д.).

Динамометрия у детей различного пола и возраста дает разные результаты, несмотря на одинаковую методику проведения. Измерение проводится два раза, через небольшую паузу для отдыха.

Возрастные показатели и норма динамометрии

Так, нормы показателей силы правой кисти у мальчиков:
- от 8 до 11 лет варьируются от 13,0 до 18, 5 кг;
- от 12 до 15 лет – от 21, 6 до 37,6 кг;
- от 16 до 19 лет – от 45,9 до 51,0 кг.

Для девочек эти нормы имеют гораздо меньшие значения:
- от 8 до 11 лет соответственно норма от 9,8 до 17,1 кг;
- от 12 до 15 лет норма равна от 19,9 до 28, 3;
- от 16 до 19 лет – от 31, 3 до 33,8 кг.

Физическая сила человека - это способность двигать груз, преодолевая сопротивление. Грузом может быть чье-то тело, лопата со снегом, гантель с дисками или любые другие предметы. Сопротивлением обычно выступает сила притяжения Земли, которую невозможно отделить от груза, потому что вес груза определяется как количество силы, которое необходимо, чтобы оторвать этот груз от центра Земли. Есть и другие формы сопротивления, не связанные с силой притяжения, такие, как, например, упругое сопротивление, которое можно преодолеть, растягивая пружину, или сопротивление трения, которое преодолевается, когда везешь сани.

Cуществует много форм силы мышц, каждая специфична для какой-то особой функции:

  • или или скоростная сила (в которой отдельно выделяют )

Многие факторы способствуют мышц человека, и не все они связаны с мускулатурой. К примеру, если у вас короткие конечности (руки и ноги), то это может помочь вам в выполнении определенных силовых задач, потому что таким образом расстояние переноса груза будет меньше. Например, длинные ноги и руки ставят в невыгодное положение, когда выполняется или (но, эти свойства помогают при выполнении становой тяги).

Для повышения силовых показателей активно применяется , и .

Два основных свойства , от которых зависит сила мышц, - это площадь поперечного сечения мускулов и нервно-мышечная эффективность. Площадь поперечного сечения мускулов отвечает за плотность мускулов. Обычно чем плотнее становится мускул, тем он способен проявить больше силы. Отчасти это из-за того, что у более плотных мускулов более плотное мышечное волокно, а в более плотных мышечных волокнах обычно содержится больше сократительного белка, который представляет собой основной механизм сокращения мышц. Увеличивать количество сократительного белка в мышечных волокнах - это все равно что добавлять еще одного человека со своей стороны при перетягивании каната.

Нервно-мышечная эффективность - в широком смысле это понятие приводит нас к пониманию сочетания мыслительных процессов и мышечной силы. Любое сокращение мышц начинается с мозга. Та часть в вашей голове, которая называется «двигательный центр», посылает электрический сигнал по позвоночнику и дальше по двигательным нервам в мышечные волокна, благодаря чему они начинают сокращаться. Спортивные тренировки ведут к таким изменениям в системе, которые дают возможность мускулам сокращаться быстрее, используя больше силы и более эффективно. Если вы представите ваш мозг в роли сержанта-инструктора по строевой подготовке, который отдает приказания взводу мышечных волокон, чтобы они начали сокращаться, то для вас подобный взгляд может оказать влияние, подобное увеличению громкости команд от шепота до крика.

Развитие нервно-мышечной активности происходит независимо от . Вот почему вы никогда не можете сказать наверняка, насколько силен какой-либо человек, руководствуясь размером его мышц. Человек с относительно небольшими мускулами и высоким уровнем нервно-мышечной активности с большей вероятностью сможет победить человека с большими мускулами и низким уровнем нервно-мышечной активности.

В идеале тренировки на увеличение площади поперечного сечения мускулов отличаются от тренировок на повышение нервно-мышечной активности. Если вы новичок, то, скорее всего, вы не заметите этой разницы и любой вид тренировок поможет вам как увеличить размеры мускулов, так и повысить нервно-мышечную активность. Увеличивая количество упражнений или вес штанги, вы продолжите развивать площадь поперечного сечения ваших мускулов, а также повышать нервно-мышечную активность. Хотя, становясь более опытным, вы придете к выводу, что это просто невозможно найти такой вид тренировок, который бы увеличил размеры и силу мускулов одновременно. На самом деле вы не можете увеличить количество упражнений и вес штанги одновременно. Если вы хотите увеличить объем ваших тренировок, вам неминуемо придется ограничить количество веса, который вы поднимаете, таким образом, ваши мускулы не станут изнуренными очень быстро. Но если вы решите увеличить вес, который вы поднимаете, то вам нужно ограничить объем тренировок, потому что поднятие (работа) с очень тяжелым весом утомляет мускулы.

Поднимать очень тяжелые грузы - это наиболее эффективный способ увеличить нервно-мышечную активность. Поэтому если вы предпочтете увеличить количество упражнений вместо весов, с которыми вы их выполняете, вы, вероятнее всего, придете к такому состоянию, когда количество упражнений, которые вы выполняете для того, чтобы увеличить размеры своих мускулов, выполняются за счет вашей нервно-мышечной активности, а сила мышц вообще перестает развиваться. Хотя если вашей целью является повышение максимальной силы мышц настолько, насколько это возможно, то вам нужно тренироваться таким способом, который бы сбалансировал рост мышц и развитие нервно-мышечной активности.

Оценка максимальной, максимальной произвольной, абсолютной и относительной силы мышц

Сила - это способность мышц преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилий. Она проявляется в таких основных формах: максимальная мышечная сила (абсолютная и относительная), скоростная (динамическая), статическая (изометрическая) сила и силовая выносливость (Аганянц, 2001; Остапенко, 2002; Спортивная физиология, 1986).

Под максимальной силой подразумевают наибольшую возможность, которую спортсмен способен проявить при максимальном произвольном мышечном сокращении. Максимальная сила мышцы зависит от количества и толщины ее мышечных волокон. Количество и толщина мышечных волокон определяют толщину мышцы в целом -анатомический поперечник , то есть площадь поперечного сечения .

Отношение значения максимальной силы мышцы к его анатомическому поперечнику называют относительной силой мышцы . Поперечное сечение мышцы, перпендикулярное направлению ее волокон, составляет ее физиологический поперечник . Для мышц с параллельным направлением волокон физиологический поперечник совпадает с анатомическим. Отношение максимальной силы мышцы к ее физиологическому поперечнику называют абсолютной силой мышцы.

Скоростная сила (взрывная) - это способность проявлять самую большую силу в самое короткое время.

Это способность мышцы или мышечной группы противостоять утомлению во время многократных мышечных сокращений.

Для развития силы существуют определенные возрастные периоды, когда благоприятными являются морфологические и функциональные предпосылки: у девочек-9-11 лет, а у мальчиков прослеживаются два периода - 9-12 лет и 14-17 лет (Апанасенко, 1985; Виксне, 1989; Ермолаев, 2001; Фомин, Вавилов, 1991).

Различают максимальную статическую и максимальную динамическую силу. Максимальная статическая сила проявляется во время изометрического сокращения мышц. Условия проявления максимальной статической силы таковы:

  • активация всех двигательных единиц;
  • сокращение мышц при условии полного тетануса;
  • сокращение мышц в состоянии покоя;
  • мобилизация деятельности симпатической нервной системы и др.

Максимальная динамическая сила - это сила, проявляемая спортсменом во время максимального произвольного сокращения мышц без учета времени и массы собственного тела. обеспечивается в основном:

  • частотой импульсации в начале сокращения и синхронизацией импульсации различных мотонейронов (внутримышечная координация);
  • сократительными свойствами мышц (внутримышечная координация);
  • степенью гипертрофии быстросокращающихся мышечных волокон и др.

Тренировочные занятия силовой направленности стимулируют (увеличение обхвата мышц) саркоплазматическую и миофибриллярную (Спортивная фармакология, 1986; Солодков, Сологуб, 2003). Саркоплазматическая гипертрофия обусловлена увеличением объема саркоплазмы, содержания в ней митохондриальных белков, метаболических резервов, миоглобина, количества капилляров. К таким превращениям наиболее склонны медленные мышечные волокна и быстрые - окисляемые. Такой тип гипертрофии мало влияет на прирост силы, но повышает способность к продолжительной работе (выносливость).

Миофибриллярная гипертрофия обусловлена увеличением объема миофибрил за счет актомиозина.. При этом значительно повышается сила. Большую роль в активизации синтеза белка и нуклеиновых кислот играют и гормоны коры , а также средства с . Во всех случаях развиваются эти два типа гипертрофии с преобладающим развитием одного из них.

Тестирование

Оснащение : кистевой и становой динамометры.

  • Оценку максимальной мышечной силы проводят при помощи разных динамометров. Кистевой динамометр (динамометр Коллина) используют для измерения силы мышц предплечья и кисти. Становой динамометр используют для регистрации силы мышц-разгибателей туловища.

Все испытуемые проводят измерения силы мышц предплечья и кисти, а также силу мышц-разгибателей туловища по два-три раза и записывают самый лучший результат. Следует помнить, что становая сила не исследуется в случае боли в пояснице, повреждении мышц живота, спины; у женщин - в период менструации и беременности.

В висе поднимание ног вперед (количество раз за 10 с).

  • Оценку силовой выносливости мышц рук и пояса верхних конечностей испытуемых можно провести во время выполнения или сгибания и разгибания рук в упоре на брусьях. Для мышц живота используют поднимание и опускание туловища из положения лежа на спине, а для мышц ног- приседания.

Полученные данные заносят в таблицу 27, сравнивают и делают выводы о силовых возможностях всех испытуемых.

Таблица 27 - Определение силовых возможностей

В условиях изометрического сокращения мышцы проявляют максимальную статическую силу.

Максимальная статическая сила и максимальная произвольная статическая сила мышц

И зометрически сокращающаяся мышца развивает максимально возможное для нее напряжение при одновременном выполнении следующих трех условий:

    активации всех двигательных единиц (мышечных волокон) данной мышцы;

    режиме полного тетануса у всех ее двигательных единиц;

    сокращении мышцы при длине покоя.

В этом случае изометрическое напряжение мышцы соответствует ее максимальной статической силе.

М аксимальная сила (МС), развиваемая мышцей, зависит от числа мышечных волокон, составляющих данную мышцу, и от их толщины. Число и толщина волокон определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение МС мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в ньютонах или килограммах силы на 1 см2 (Н/см2 или кг/см2).

А натомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно к ее длине. Поперечный разрез мышцы, проведенный перпендикулярно к ходу ее волокон, позволяет получить физиологический поперечник мышцы. Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. Отношение МС мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы. Она колеблется в пределах 0,5-1 Н/см2.

И змерение мышечной силы у человека осуществляется при его. произвольном усилии, стремлении максимально сократить необходимые мышцы. Поэтому когда говорят о мышечной силе у человека, речь идет о максимальной произвольной силе (МПС, в спортивной педагогике этому понятию эквивалентно понятие "абсолютная сила мышц"). Она зависит от двух групп факторов: мышечных (периферических) и координационных (центрально-нервных).

К мышечным (периферическим) факторам, определяющим МПС, относятся:

    механические условия действия мышечной тяги - плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

    длина мышц, так как напряжение мышцы зависит от ее длины;

    поперечник (толщина) активируемых мышц, так как при прочих равных условиях-проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц;

    композиция мышц, т. е. соотношение быстрых и медленных мышечных волокон в. сокращающихся мышцах.

К координационным (центрально-нервным) факторам относится совокупность центрально-нервных координационных механизмов управления мышечным аппаратом - механизмы внутримышечной координации и механизмы межмышечной координации.

М еханизмы внутримышечной координации определяют число и частоту импульсации мотонейронов данной мышцы и связь их импульсации во времени. С помощью этих механизмов центральная нервная система регулирует МПС данной мышцы, т. е. определяет, насколько сила произвольного сокращения данной мышцы близка к ее МС. Показатель МПС любой мышечной группы даже одного сустава зависит от силы сокращения многих мышц. Совершенство межмышечной координации проявляется в адекватном выборе "нужных" мышц-синергистов, в ограничении "ненужной" активности мышц-антагонистов данного и других суставов и в усилении активности мышц-антагонистов, обеспечивающих фиксацию смежных суставов и т. п.

Т аким образом, управление мышцами, когда требуется проявить их МПС, является сложной задачей для центральной нервной системы. Отсюда понятно, почему в обычных условиях МПС мышц меньше, чем их МС. Разница между МС мышц и их МПС называется силовым дефицитом.

С иловой дефицит у человека определяется следующим образом. На специальной динамометрической установке измеряют МПС выбранной группы мышц, затем - ее МС. Чтобы измерить МС, раздражают нерв, иннервирующий данную мышечную группу, электрическими импульсами. Силу электрического раздражения подбирают такой, чтобы возбудить все моторные нервные волокна (аксоны мотонейронов). При этом применяют частоту раздражения, достаточную для возникновения полного тетануса мышечных волокон (обычно 50-100 имп/с). Таким образом, сокращаются все мышечные волокна данной мышечной группы, развивая максимально возможное для них напряжение (МС).

С иловой дефицит данной мышечной группы тем меньше, чем совершеннее центральное управление мышечным аппаратом. Величина силового дефицита зависит от трех факторов:

    психологического, эмоционального, состояния (установки) испытуемого;

    необходимого числа одновременно активируемых мышечных групп

    степени совершенства произвольного управления ими.

П ервый фактор. Известно, что при некоторых эмоциональных состояниях человек может проявлять такую силу, которая намного превышает его максимальные возможности в обычных условиях. К таким эмоциональным (стрессовым) состояниям относится, в частности, состояние спортсмена во время соревнования. В экспериментальных условиях значительное повышение показателей МПС (т. е. уменьшение силового дефицита) обнаруживается при сильной мотивации (заинтересованности) испытуемого, в ситуациях, вызывающих его сильную эмоциональную реакцию, например после неожиданного резкого звука (выстрела). То же отмечается при гипнозе, приеме некоторых лекарственных препаратов. При этом положительный эффект (увеличение МПС, уменьшение силового дефицита) сильнее выражен у нетренированных испытуемых и слабее (или совсем отсутствует) у хорошо тренированных спортсменов. Это указывает на высокую степень совершенства центрального управления мышечным аппаратом у спортсменов.

В торой фактор. При одинаковых условиях измерения величина силового дефицита тем больше, чем больше число одновременно сокращающихся мышечных групп. Например, когда измеряется МПС мышц, только приводящих большой палец кисти, силовой дефицит составляет у разных испытуемых 5-15% от МС этих мышц. При определении МПС мышц, приводящих большой палец и сгибающих его концевую фалангу, силовой дефицит возрастает до 20%. При максимальном произвольном сокращении больших групп мышц голени силовой дефицит равен 30% (Я.М. Коц).

Т ретий фактор. Роль его доказывается различными экспериментами. Показано, например, что изометрическая тренировка, проводимая при определенном положении конечности, приводит к значительному повышению МПС, измеряемой в том же положении. Если измерения проводятся в других положениях конечностя, то прирост.МПС оказывается незначительным или отсутствует совсем. Если бы прирост МПС зависел только от увеличения поперечника тренируемых мышц (периферического фактора), то он обнаруживался бы при. измерениях в любом положении конечности. Следовательно, в данном случае прирост МПС зависит от более совершенного, чем до тренировки, центрального управления мышечным аппаратом именно в тренируемом положении.

Р оль координационного фактора выявляется также при изучении показателя относительной произвольной силы, которая определяется делением показателя МПС на величину мышечного поперечника (Так как у человека можно измерить только анатомический поперечник мышцы, для большинства мышц определяется не абсолютная произвольная сила (отношение МПС к физиологическому поперечнику), а относительная (отношение МПС к анатомическому поперечнику). В спортивной педагогике понятием "относительная сила" обозначают отношение МПС к весу спортсмена.). Так, после 100-дневной тренировки с применением изометрических упражнений МПС мышц тренируемой руки выросла на 92%, а площадь их поперечного сечения на 23% (рис. 28). Соответственно относительная произвольная сила увеличилась в среднем с 6,3 до 10 кг/см2. Следовательно, систематическая тренировка может способствовать совершенствованию произвольного управления мышцами. МПС мышц нетренируемой руки также несколько увеличилась за счет последнего фактора, так как площадь поперечного сечения мышц этой руки не изменилась. Это показывает, что более совершенное центральное управление мышцами может проявляться в отношении симметричных мышечных групп (явление "переноса" тренировочного эффекта).

Как известно, наиболее высокопороговыми ("менее возбудимыми") являются быстрые двигательные единицы мышцы. Их вклад в общее напряжение мышцы особенно велик, так как каждая из них содержит много мышечных волокон. Быстрые мышечные волокна толще, имеют больше миофибрилл, и поэтому сила их сокращения выше, чем у медленных двигательных единиц. Отсюда понятно, почему МПС зависит от композиции мышц: чем больше быстрых мышечных волокон они содержат, тем выше их МПС.

К огда перед спортсменом стоит задача развить значительную мышечную силу во время выполнения соревновательного упражнения, он должен систематически применять на тренировках упражнения, которые требуют проявления большой мышечной силы (не менее 70% от его МПС). В этом случае совершенствуется произвольное управление мышцами, и в частности механизмы внутримышечной координации, обеспечивающие включение как можно большего числа двигательных единиц основных мышц, в том числе наиболее высокопороговых, быстрых двигательных единиц.